Counting interval graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cayley's formula for counting trees in nested interval graphs

In this paper it is shown that the spectrum of a nested interval graph has a very simple structure. From this result a formula is derived to the number of spanning trees in a nested interval graph; this is a generalization of the Cayley formula.

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Counting Stabilized-Interval-Free Permutations

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n]. By presenting a decomposition of an arbitrary permutation into a list of SIF permutations, we show that the generating function A(x) for SIF permutations satisfies the defining property: [xn−1]A(x)n = n! . We also give an efficient recurrence for counting SIF permut...

متن کامل

Region counting graphs

A new family of proximity graphs, called region counting graphs (RCG) is presented. The RCG for a finite set of points in the plane uses the notion of region counting distance introduced by Demaine et al. to characterize the proximity between two points p and q: the edge pq is in the RCG if and only if there is less than or exactly k vertices in a given geometric neighborhood defined by a regio...

متن کامل

Counting Trees in Graphs

Erdős and Simonovits proved that the number of paths of length t in an nvertex graph of average degree d is at least (1 − δ)nd(d − 1) · · · (d − t + 1), where δ = (log d)−1/2+o(1) as d → ∞. In this paper, we strengthen and generalize this result as follows. Let T be a tree with t edges. We prove that for any n-vertex graph G of average degree d > t, the number of labelled copies of T in G is at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1982

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1982-0662044-8